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Articulatory Controllable Speech Modification

using Statistical Feature Mapping Techniques∗

Patrick Lumban Tobing

Abstract

Speech is one of the most universal way for people to communicate with

each other. In the creation of speech sounds, our articulators, such as tongue

and lips, play an essential role in determining the resonance characteristics of

the vocal tract. The traits of these speech organs, in fact, are easy to be per-

ceived in comprehending the speech production process. Therefore, by impos-

ing the use of articulators, one may develop intuitive and perceptive speech ap-

plications, e.g. for assisting speech-disabled people, for supplementary tools in

language-learning sessions, and many others. In this thesis, in order to lay a

groundwork towards the development of such applications, we propose an articu-

latory controllable speech modification method based on statistical feature map-

ping techniques, such as the Gaussian mixture model (GMM)-based acoustic-

to-articulatory inversion mapping and the GMM-based articulatory-to-acoustic

production mapping. These GMM-based statistical feature mapping techniques

possess invaluable attributes by having low-cost development resources, clear and

convenient training–conversion schemes, and independency of any language spec-

ification textual features. To maximize their potentials, we propose a sequential

mapping procedure which enables a speech modification mechanism by manip-

ulation of the unobserved articulatory movements from an input speech sound.

We also deploy a method for controlling movements of the articulators by con-

sidering their inter-correlations to produce more natural modification outcomes.

Additionally, to alleviate the degradation of speech quality in a vocoder-based

∗Master’s Thesis, Graduate School of Information Science, Nara Institute of Science and

Technology, NAIST-IS-MT1451207, August 8, 2016.
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excitation generation process, we apply a direct waveform modification process

that directly filters an input speech signal according to the differences of spectrum

between modified speech and the original one. The experimental results demon-

strate that: 1) the proposed sequential mapping between acoustic spectrum and

articulatory movements yields higher production mapping accuracy than the con-

ventional production procedure using the measured articulatory parameters, 2)

the proposed method for controlling articulatory movements makes it possible to

generate more natural modified speech sounds, 3) the proposed speech generation

schema based on direct waveform modification significantly improves the quality

of modified speech sounds, and 4) the controllability of the proposed system has

been affirmed by its capability of producing different sounds of vowel by means

of handling the configuration of particular articulatory positions.

Keywords:

articulatory control, speech modification, Gaussian mixture model, statistical

feature mapping, inter-correlations of articulators, direct waveform modification
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Chapter 1

Introduction

1.1. Background

Speech is the most common way for people in communicating with each other.

Indeed, through speech, almost every contents of our mind can be expressed and

conveyed naturally. The proficiency of producing proper speech, thus, be one of

the fundamental facets in the human relation.

To produce speech sounds, first, our lungs build up air pressure, where the

resulting airflow would be vibrated by our vocal folds. Then, our speech organs

act in such a way, so that the resulting excitation sounds are modulated to produce

particular speech sounds. These speech organs or the so called articulators, such

as tongue and lips, are the ones that determine the resonance characteristics of

the vocal tract which in turn dictate the phonetical quality of the resulting speech

sounds. An illustration of the mechanism of speech production is shown in Fig.

1.1.

Moving a little bit further, in this fast-paced computing era, technology has

been permeating into practically every aspects of human life. This encompasses

also the aspect of human communication, especially in terms of speech technol-

ogy. It can be denied that, right now, the use of speech technology is unavoidable

in our life. Henceforth, effective and efficient way of speech-related technologies

development becomes one of the crucial feature to keeping up with the advance-

ments of automation system in our life.

Employment of speech technology often suggests a kind of sophisticated and

1
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Figure 1.1. Illustration of human speech production mechanism.

cryptic system. However, if we take a look at the natural process of speech

production, we can easily attempt to make use of the dependency between the

creation of speech sounds and the traits of our speech organs. To be able to

automatically perform computation of speech signal, it is parameterized generally

by the utilization of the spectrum of the vocal tract. Though, it is also possible,

by knowing the fact that our articulators take a vital part in the determination

of vocal tract spectrum, to use the more slowly varying parameters, i.e. the

articulatory parameters [1]. This, of course, would lead to an overally more

intuitive and perceptive speech technology. In fact, the relationship between

speech signal and the articulators has been studied in many works, such as in

speech synthesis [2, 3], speech recognition [4, 5], and speech coding [6].

Development of a system that is capable of taking advantage of the intu-

itiveness of articulatory representation is one of the most vital contribution in

the advancements of speech technology. This is due to the nature of the speech

production which cannot be separated from the quality of the articulation. As

a matter of fact, the visualization of articulatory movements has been showing

2



promising potentials in the creation of a system to help speech-disabled people

in speech therapy sessions [7, 8], as supplementary tools for language learning

program [9, 10, 11], and as a vital component in helping non-native speaker to

correct their accent in pronunciation learning procedure [12, 13, 14]. Overall, it

has been summarized in [15] that currently, the use of articulatory-aid in speech

technology is one of the fundamental needs. However, a system which enables

us to flexibly tinker our articulatory movements from our own speech generation

procedure has not yet been developed. Such kind of mechanism would be very

useful not only for the use of assistances in daily life, as have been elaborated,

but also, of course, as an invaluable tool in research work.

1.2. Related Work

In accomplishing the automation of the employment of articulatory elements in

speech applications, first, we need to define the procedure for relationship map-

ping between acoustic and articulatory parameters. The mapping process from

acoustic to articulatory parameters is well known as the inversion mapping. On

the other hand, the opposite procedure, i.e. mapping from articulatory to acoustic

parameters is often named as the production mapping. To establish these map-

ping relationships, formerly, a mathematical production model was used [6, 16].

However, the speech production process cannot be modeled without some ap-

proximations. Lately, thanks to advancements of recording devices which enable

us to simultaneously record speech sounds and articulatory data, the availability

of parallel-data of speech and articulatory movements has been growing rapidly.

This contributes to a lot of recent works in data-driven based mapping tech-

niques which is capable of capturing statistical traits between the acoustic and

articulatory data rather than mathematically modeling them.

Some works on statistical data-driven feature mapping for inversion mapping

have been studied and published. In [17], a codebook based mapping approach

has been proposed as the initial work on data-driven inversion mapping. In [18],

the incorporation of dynamic features capturing the temporal patterns of acoustic

spectrum significantly improves the accuracy in estimating articulatory positions

with a codebook-based approach. Then, in [19], an inversion mapping method us-

3



Table 1.1. Comparison of several statistical feature mapping techniques.
PPPPPPPPPPPtrait

method
Neural network HMM GMM

accuracy excellent very good very good

computation load very large small small

data requirement very large small small

language dependent no yes no

parameter characteristics non-interpretable interpretable interpretable

ing neural network based on mixture density estimation has been examined show-

ing the importance of multiple representation of articulatory probability density.

Hidden Markov model (HMM)-based inversion mapping has also been studied in

[20, 21], by using the inclusion of language specification features. And in [22],

the Gaussian mixture model (GMM)-based inversion mapping has been proposed

enabling efficient and effective inversion mapping procedure without the use of

phonetic features.

Several noted works on the articulatory-to-acoustic production mapping have

also been proposed in a similar chronological fashion as with the inversion map-

ping. In [23], the vocal tract spectrum can be estimated from the articulatory

data with a searching procedure through acoustic-articulatory data with the in-

clusion of also phonetical categorization. Another neural network based method

has also been studied for the production mapping task, in [24]. In [25], harmonic

features in multiple frames have been used to statistically performing better es-

timation of acoustic spectrum from articulatory parameters. The HMM-based

method has also been studied in [26], to incorporate not only the phonetical in-

formation but also temporal patterns in spectrum estimation from articulatory

configurations. Then, in [27], the GMM-based approach is used to alleviate the

needs of any textual input in generating speech spectra from articulatory move-

ments. The trade-off between the related techniques that have been studied is

shown in Table 1.1.

In this thesis, we focus on the statistical feature mapping approach with Gaus-

sian mixture model (GMM), which has been studied and summarized for both

the acoustic-to-articulatory inversion mapping and the articulatory-to-acoustic

4



production mapping in [28]. The GMM mapping technique is widely known for

its pioneering use in the voice conversion mechanism [29]. The employment of

this method has been used widely, as in the more refined voice conversion system

[30], speech enhancement for laryngectomee patients [31], statistical singing voice

conversion [32], and non-audible murmur to speech conversion [33]. These are the

examples of the extensive use of GMM-based statistical feature mapping. Talking

back again about a system for speech and articulators, an HMM-based system

has recently been proposed to enabling a control of articulatory parameters in a

text-to-speech (TTS) system [34], but without any comprehensive manipulation

method of the articulatory features. Moreover, reviewing over the motivation in

developing a system based on speech and articulatory movements, it cannot be

denied that the independency of any language characteristics would be one of the

fundamental element to create a flexible and widely applicable applications.

The GMM-based method is known widely as a generative model, as also with

the HMM-based, whereas the NN (neural-net)-based is categorized as a discrim-

inative model. This, supported by the fact that generative models can elegantly

capture the statistical traits between joint input and output data compared with

discriminative ones that try to create predictive model of output given input

data, [35, 36] would prove to be a significant advantage in the case of flexibility

for adapting the model into various tasks. Moreover, due to the characteris-

tic of NN-based mapping which abstractly captures the contribution between

features of data, through their weights, without providing meaningful interpre-

tations of correlations between each features [37], it has a very conflictive trait

with the spirit in developing speech-articulatory related applications. Therefore,

deployment of the GMM-based statistical feature mapping technique for efficient

utilization of articulatory movements in a speech-related system, such as a robust

and flexible speech modification system, would be an essential contribution for

speech-technology development.

1.3. Thesis Scope

In this thesis, we propose an articulatory controllable speech modification system

using statistical feature mappings. Specifically, we employ the Gaussian mixture

5



input speech
signal

estimated
articulatory
movements

manipulated
articulatory
movements

modified speech
signal

Section 2.2
acoustic-to-articulatory

inversion mapping

Section 2.3
articulatory-to-acoustic
production mapping +

Section 3.3
manipulation process

Section 3.4
high-quality modified speech

generation process

Proposed articulatory controllable
speech modification

with a sequential mapping
procedure (Section 3.2)

Figure 1.2. Flow of the proposed articulatory controllable speech modification

system by sequentially integrating the acoustic-articulatory mappings with inclu-

sion of articulatory control and high-quality modified speech generation process.

model (GMM)-based acoustic-to-articulatory inversion mapping and the GMM-

based articulatory-to-acoustic production mapping. The overview of the proposed

system is illustrated in Fig. 1.2. These inversion and production mappings are

integrated in a sequential mapping scheme to enable an intuitive speech mod-

ification procedure via manipulation of the unobserved articulatory movements

of an input speech signal. In the proposed system, in order to administer fine

results from the manipulation of articulatory movements, we deploy a method

for controlling the articulatory parameters through consideration of their inter-

correlations. In addition, to guarantee high-quality modified speech sounds, we

bypass the use of vocoder-based excitation generation process, in synthesizing
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the speech signal, through the use of direct waveform modification method which

directly filters an input speech waveform according to the spectrum differences

between modified speech and original one. The experimental results demonstrate

that the proposed system is capable of producing high-quality modified speech

sounds through the use of convenient manipulation practice of the articulatory

organs.

1.4. Thesis Overview

This thesis is organized as follows. In chapter 2, the GMM-based statistical

feature mappings between acoustic and articulatory parameters are explained.

In chapter 3, the proposed articulatory controllable speech modification system

is described. In chapter 4, the experimental evaluation results are given. Finally,

chapter 5 presents summary of this thesis and the future work.

7



Chapter 2

Statistical Feature Mapping

between Acoustic and

Articulatory Parameters with

Gaussian Mixture Model

2.1. Introduction

In this thesis, two main mapping systems using Gaussian mixture model (GMM)

are deployed, i.e. acoustic-to-articulatory inversion mapping and articulatory-to-

acoustic production mapping. In order to develop these systems, two processes

are required to be established in each of the mapping system, i.e. training and

conversion process. In the training process, the joint probability density function

of source and target features is modeled with a GMM. In the conversion process,

given the source features and trained model parameters, target features are de-

termined by utilizing the conditional probability function derived from the joint

GMM.

Regarding the acoustic and articulatory parameters, in this thesis, the mel-

cepstrum parameters representing the spectral envelope are used for the acoustic

parameters. On the other hand, the EMA data representing the articulatory

movements are utilized as the articulatory parameters. These features are ex-

8



plained in details in the section 4.1

This chapter is organized as follows. The GMM-based acoustic-to-articulatory

inversion mapping is described in section 2.2. Specifically, its training and conver-

sion process are given in sections 2.2.1 and 2.2.2, respectively. In the section 2.3,

the GMM-based articulatory-to-acoustic inversion mapping is presented, along

with its training and conversion process in sections 2.3.1 and 2.3.2. Finally, this

chapter is summarized in section 2.5.

2.2. GMM-based Acoustic-to-Articulatory Inver-

sion Mapping

In the GMM-based acoustic-to-articulatory inversion mapping system, the source

features are composed by the acoustic parameters, while the target features are

composed by the articulatory parameters. First, let us define a Dc-dimensional

feature vector of the acoustic parameters, i.e. the mel-cepstrum, as ct and a Dx-

dimensional feature vector of the articulatory parameters as xt at frame t. Then,

the time sequence vector of acoustic parameters and that of the articulatory

parameters are respectively written as

c = [c⊤1 , c
⊤
2 , . . . , c

⊤
t , . . . , c

⊤
T ]

⊤, (2.1)

x = [x⊤
1 ,x

⊤
2 , . . . ,x

⊤
t , . . . ,x

⊤
T ]

⊤, (2.2)

where the superscript ⊤ indicates transposition.

As the source features, mel-cepstral segment feature vectors are developed by

extracting the mel-cepstrum parameters at multiple frames around the current

frame. Let us define the time sequence of mel-cepstral segment feature vectors

O, which is written as

O = [O⊤
1 ,O

⊤
2 , . . . ,O

⊤
t , . . . ,O

⊤
T ]

⊤. (2.3)

At frame t, the mel-cepstral segment feature vector Ot is then given by

Ot = A[c⊤t−L, . . . , c
⊤
t , . . . , c

⊤
t+L]

⊤ + b, (2.4)

where L is the length of the context-window of a segment. The principal compo-

nent analysis (PCA) method [38] is used to determine the transformation matrix

A and b with training data beforehand.

9



As the target features, let us define the time sequence of joint static and

dynamic feature vectors of articulatory parameters X, which is written as

X = [X⊤
1 ,X

⊤
2 , . . . ,X

⊤
t , . . . ,X

⊤
T ]

⊤. (2.5)

Here, the 2Dx-dimensional joint static and dynamic feature vector of articulatory

parameters is denoted as X t = [x⊤
t ,∆x

⊤
t ]

⊤ at frame t. The dynamic feature

vector ∆xt is computed from the static feature vector xt, which is given by

∆xt =

L
(1)
+∑

τ=−L
(1)
−

w(1)(τ)xt+τ , (2.6)

where w(1)(τ), L
(1)
− , and L

(1)
+ are the 1-st order weight coefficients and the frame

lengths for computing the dynamic feature vector.

2.2.1 Training process

Schematic flow of the training process for inversion mapping is shown in Fig. 2.1.

From the training data, a joint source and target feature vector [O⊤
t ,X

⊤
t ]

⊤ is

developed at each frame t. Then, its joint probability density function is modeled

with the GMM for the inversion mapping as follows:

P (Ot,X t|λ(O,X)) =
M∑

m=1

P (Ot,X t|m,λ(O,X))

=
M∑

m=1

α(O,X)
m N ([O⊤

t ,X
⊤
t ]

⊤;µ(O,X)
m ,Σ(O,X)

m ), (2.7)

where the Gaussian distribution with mean µ and covariance Σ is denoted as

N (·;µ,Σ). Here, the mixture component index is denoted as m and the total

number of mixture components is M . The set of the GMM parameters for inver-

sion mapping is denoted as λ(O,X), which consists of weights α
(O,X)
m , mean vectors

µ
(O,X)
m and covariance matrices Σ(O,X)

m of individual mixture components. The

mean vector µ
(O,X)
m and covariance matrix Σ(O,X)

m of the mth mixture component

are written as

µ(O,X)
m =

[
µ

(O)
m

µ
(X)
m

]
,Σ(O,X)

m =

[
Σ(OO)

m Σ(OX)
m

Σ(XO)
m Σ(XX)

m

]
, (2.8)

10
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Figure 2.1. Schematic flow of the training process for GMM-based inversion

mapping.

where the mean vectors of the acoustic parameters and that of the articulatory

parameters for the mth mixture component are denoted as µ
(O)
m and µ

(X)
m , re-

spectively. The covariance matrix of the acoustic parameters is denoted as Σ(OO)
m

and that of the articulatory parameters is denoted as Σ(XX)
m for the mth mixture

component. The cross covariance matrices of the acoustic and articulatory pa-

rameters for the mth mixture components are denoted as Σ(OX)
m and Σ(XO)

m . All

of these covariance matrices are full.

In order to train the GMM parameters of the inversion mapping λ(O,X), the

11



following likelihood function is to be maximized

P (O,X|λ(O,X)) =
∑
all m

P (m|O,X,λ(O,X))P (O,X, |m,λ(O,X))

=
T∏
t=1

M∑
m=1

P (m|Ot,X t,λ
(O,X))P (Ot,X t|m,λ(O,X)), (2.9)

where m = {m1,m2, . . . ,mt, . . . ,mT} is a mixture component sequence.

Utilizing the Expectation-Maximization (EM) algorithm [39], given a set of

initial parameters λ(O,X), a set of updated parameters λ̂(O,X) is estimated with

respect to the following auxiliary function

Q(λ̂(O,X),λ(O,X)) =
∑
all m

P (m|O,X,λ(O,X)) logP (O,X, |m, λ̂(O,X)). (2.10)

In the expectation step (E-step), the occupancies γ
(O,X)
m,t of each mixture com-

ponents for each frames and the total number of samples belonging to each mix-

ture components N
(O,X)
m are given by

γ
(O,X)
m,t = P (m|Ot,X t,λ

(O,X))

=
αmN ([O⊤

t ,X
⊤
t ]

⊤;µ
(O,X)
m ,Σ(O,X)

m )∑M
n=1 αnN ([O⊤

t ,X
⊤
t ]

⊤;µ
(O,X)
n ,Σ(O,X)

n )
, (2.11)

N (O,X)
m =

T∑
t=1

γ
(O,X)
m,t . (2.12)

Then, in the maximization step (M-step), the updated parameters in the set

λ̂(O,X) would be finally given by

α̂(O,X)
m =

N
(O,X)
m

T
(2.13)

µ̂(O,X)
m =

1

N
(O,X)
m

T∑
t=1

γ
(O,X)
m,t [O⊤

t ,X
⊤
t ]

⊤ (2.14)

Σ̂(O,X)
m =

1

N
(O,X)
m

T∑
t=1

γ
(O,X)
m,t ([O⊤

t ,X
⊤
t ]

⊤ − µ̂(O,X)
m )([O⊤

t ,X
⊤
t ]

⊤ − µ̂(O,X)
m )⊤.

(2.15)
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Figure 2.2. Schematic flow of the conversion process for GMM-based inversion

mapping.

2.2.2 Conversion process

Schematic flow of the conversion process for inversion mapping is shown in Fig.

2.2. Given a time sequence of mel-cepstral segment feature vectors O and the

trained GMM parameters of the inversion mapping λ(O,X), a time sequence vector

of the corresponding articulatory parameters x̂ is determined by

x̂ = argmax
x

P (X|O,λ(O,X)), (2.16)

where

P (X|O,λ(O,X)) =
∑
all m

P (m|O,λ(O,X))P (X|O,m,λ(O,X))

=
T∏
t=1

M∑
m=1

P (m|Ot,λ
(O,X))P (X t|Ot,m,λ

(O,X)). (2.17)

The m-th posterior probability density P (m|Ot,λ
(O,X)) and the m-th condi-

tional probability density P (X t|Ot,m,λ
(O,X)) at each frame t are given by

P (m|Ot,λ
(O,X)) =

αmN (Ot;µ
(O)
m ,Σ(OO)

m )∑M
n=1 αnN (Ot;µ

(O)
n ,Σ(OO)

n )
, (2.18)

P (X t|Ot,m,λ
(O,X)) = N (X t;E

(X)
m,t ,D

(X)
m ), (2.19)

13



where the conditional mean vector E
(X)
m,t and the conditional covariance matrix

D(X)
m are written as

E
(X)
m,t = µ

(X)
m +Σ(XO)Σ(OO)−1

m (Ot − µ(O)
m ), (2.20)

D(X)
m = Σ(XX)

m −Σ(XO)
m Σ(OO)−1

m Σ(OX)
m . (2.21)

In the same way as the parameter generation algorithm in the HMM [40, 41],

a time sequence vector of the articulatory parameters is determined under an

explicit relationship between the time sequence of static feature vectors x and

that of the joint static and dynamic feature vectors X, which is given by

X =W xx, (2.22)

where W x is a 2DxT -by-DxT linear transformation matrix to append the dy-

namic feature vectors from the Eq. (2.6), which is written as

W x =
[
W x1 ,W x2 , . . . ,W xt , . . . ,W xT

]⊤ ⊗ IDx×Dx , (2.23)

W xt =
[
w(0)

xt
,w(1)

xt

]
, (2.24)

w(n)
xt

=

[
1st

0 , . . . , 0,

(t−L
(n)
− )−th

w(n)
x (−L(n)

− ), . . . ,
(t)−th

w(n)
x (0),

. . . ,

(t+L
(n)
+ )−th

w(n)
x (L

(n)
+ ), 0, . . . ,

T−th

0

]⊤
, n = 0, 1, (2.25)

L
(0)
− = L

(0)
+ = 0 and w

(0)
x (0) = 1.

In order to maximize the likelihood function P (X|O,λ(O,X)) in Eq. (2.16), the

EM algorithm can be deployed. Explicitly, by using the constraint in Eq. (2.22),

an auxiliary function of a current parameter X and an updated parameter X̂ is

maximized as follows:

Q(X, X̂) =
∑
all m

P (m|O,X,λ(O,X)) logP (X̂|O,m,λ(O,X))

= −1

2
x̂⊤W⊤

xD
(X)−1

W xx̂+ x̂⊤W⊤
xD

(X)−1
E(X) +K ′, (2.26)

14



where

D(X)−1
= diag

[
D

(X)−1

1 ,D
(X)−1

2 , . . . ,D
(X)−1

t , . . . ,D
(X)−1

T

]
, (2.27)

D(X)−1
E(X) =

[
D

(X)−1

1 E
(X)⊤

1 ,D
(X)−1

2 E
(X)⊤

2 . . . ,

D
(X)−1

t E
(X)⊤

t , . . . ,D
(X)−1

T E
(X)⊤

T

]⊤
, (2.28)

D
(X)−1

t =
M∑

m=1

γ
(O,X)
m,t D(X)−1

m , (2.29)

D
(X)−1

t E
(X)
t =

M∑
m=1

γ
(O,X)
m,t D(X)−1

m E
(X)
m,t , (2.30)

γ
(O,X)
m,t = P (m|Ot,X t,λ

(O,X)), (2.31)

and the constant K ′ is independent of X̂. Then, the time sequence vector of the

estimated articulatory parameters x̂ would be given by

x̂ = (W⊤
xD

(X)−1
W x)

−1W⊤
xD

(X)−1
E(X). (2.32)

In this thesis, the likelihood function in Eq. (2.16) is approximated with a

single mixture component sequence as follows:

P (X|O,λ(O,X)) ≃ P (m|O,λ(O,X))P (X|O,m,λ(O,X)). (2.33)

First, the sub-optimum mixture component sequence m̂(O) = {m̂(O)
1 , m̂

(O)
2 , . . . ,

m̂
(O)
t , . . . , m̂

(O)
T } is determined by

m̂(O) = argmax
m(O)

P (m(O)|O,λ(O,X)). (2.34)

Then, the maximization of the auxiliary function is approximated as follows:

Q(X, X̂) ≃ logP (m̂(O)|O,λ(O,X))P (X̂|O, m̂(O),λ(O,X))

= −1

2
x̂⊤W⊤

xD
(X)−1

m̂(O) W xx̂+ x̂⊤W⊤
xD

(X)−1

m̂(O) E
(X)

m̂(O) +K ′, (2.35)

where

E
(X)

m̂(O) =
[
E

(X)⊤

m̂
(O)
1 ,1

,E
(X)⊤

m̂
(O)
2 ,2

, . . . ,E
(X)⊤

m̂
(O)
t ,t

, . . . ,E
(X)⊤

m̂
(O)
T ,T

]⊤
, (2.36)

D
(X)−1

m̂(O) = diag
[
D

(X)−1

m̂
(O)
1

,D
(X)−1

m̂
(O)
2

, . . . ,D
(X)−1

m̂
(O)
t

, . . . ,D
(X)−1

m̂
(O)
T

]
. (2.37)
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So that, the time sequence vector of the estimated articulatory parameters x̂ is

finally given by

x̂ = (W⊤
xD

(X)−1

m̂(O) W x)
−1W⊤

xD
(X)−1

m̂(O) E
(X)

m̂(O) . (2.38)

2.3. GMM-based Articulatory-to-Acoustic Pro-

duction Mapping

In the GMM-based articulatory-to-acoustic production mapping, the source fea-

tures are composed not only by the articulatory parameters, but also by the

source-excitation parameters, i.e. log-scaled F0 and log-scaled waveform power

in this thesis, whereas the target features are composed by the acoustic parame-

ters. Let us then define a Ds-dimensional feature vector of the source excitation

parameters as st at frame t.

As the source features, a 2(Dx + Ds)-dimensional feature vector denoted as

Y t = [x⊤
t , s

⊤
t ∆x

⊤
t ,∆s

⊤
t ]

⊤ is used at frame t. On the other hand, as the target

features, a 2Dc-dimensional feature vector denoted as Ct = [c⊤t ,∆c
⊤
t ]

⊤ is used at

frame t. So that, the time sequence of the source feature vectors and that of the

target feature vectors are respectively written as

Y = [Y ⊤
1 ,Y

⊤
2 , . . . ,Y

⊤
t , . . . ,Y

⊤
T ]

⊤, (2.39)

C = [C⊤
1 ,C

⊤
2 , . . . ,C

⊤
t , . . . ,C

⊤
T ]

⊤. (2.40)

As in the section 2.2, the dynamic feature vector ∆st is computed from the

static feature vector st at frame t, which is given by

∆st =

L
(1)
+∑

τ=−L
(1)
−

w(1)(τ)st+τ . (2.41)

Similarly, the dynamic feature vector ∆ct is computed from the static feature

vector ct at frame t as given by

∆ct =

L
(1)
+∑

τ=−L
(1)
−

w(1)(τ)ct+τ , (2.42)
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where w(1)(τ), L
(1)
− , and L

(1)
+ are the 1-st order weight coefficients and the frame

lengths for computing the dynamic feature vectors.

2.3.1 Training process

Schematic flow of the training process for production mapping is shown in Fig.

2.3. From the training data, a joint source and target feature vector [Y ⊤
t ,C

⊤
t ]

⊤ is

developed at each frame t. Then, its joint probability density function is modeled

with the GMM for the production mapping as follows:

P (Y t,Ct|λ(Y,C)) =
M∑

m=1

P (Y t,Ct|m,λ(Y,C))

=
M∑

m=1

α(Y,C)
m N ([Y ⊤

t ,C
⊤
t ]

⊤;µ(Y,C)
m ,Σ(Y,C)

m ), (2.43)

where the Gaussian distribution with mean µ and covariance Σ is denoted as

N (·;µ,Σ). Again, the mixture component index is denoted as m and the to-

tal number of mixture components is M . The set of the GMM parameters for

the production mapping is denoted as λ(Y,C), which consists of weights α
(Y,C)
m ,

mean vectors µ
(Y,C)
m and covariance matrices Σ(Y,C)

m of individual mixture compo-

nents. The mean vector µ
(Y,C)
m and covariance matrix Σ(Y,C)

m of the mth mixture

component are written as

µ(Y,C)
m =

[
µ

(Y )
m

µ
(C)
m

]
,Σ(Y,C)

m =

[
Σ(Y Y )

m Σ(Y C)
m

Σ(CY )
m Σ(CC)

m

]
, (2.44)

where the mean vectors of the source feature vectors and that of the target feature

vectors for themth mixture component are denoted as µ
(Y )
m and µ

(C)
m , respectively.

The covariance matrix of the source feature vectors is denoted as Σ(Y Y )
m and that

of the target feature vectors is denoted as Σ(CC)
m for the mth mixture component.

The cross covariance matrices of the source and target feature vectors for the mth

mixture components are denoted as Σ(Y C)
m and Σ(CY )

m . All of these covariance

matrices are full.

In order to train the GMM parameters of the production mapping λ(Y,C), the
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Figure 2.3. Schematic flow of the training process for GMM-based production

mapping.

following likelihood function is to be maximized

P (Y ,C|λ(Y,C)) =
∑
all m

P (m|Y ,C,λ(Y,C))P (Y ,C, |m,λ(Y,C))

=
T∏
t=1

M∑
m=1

P (m|Y t,Ct,λ
(Y,C))P (Y t,Ct|m,λ(Y,C)), (2.45)

where m = {m1,m2, . . . ,mt, . . . ,mT} is again a mixture component sequence.

Employing also the EM algorithm [39], given a set of initial GMM parameters

for the production mapping λ(Y,C), a set of updated parameters λ̂(Y,C) is estimated

18



with respect to the following auxiliary function

Q(λ̂(Y,C),λ(Y,C)) =
∑
all m

P (m|Y ,C,λ(Y,C)) logP (Y ,C, |m, λ̂(Y,C)). (2.46)

In the E-step, the occupancies γ
(Y,C)
m,t and the number of samples N

(Y,C)
m are

given by

γ
(Y,C)
m,t = P (m|Y t,Ct,λ

(Y,C))

=
αmN ([Y ⊤

t ,C
⊤
t ]

⊤;µ
(Y,C)
m ,Σ(Y,C)

m )∑M
n=1 αnN ([Y ⊤

t ,C
⊤
t ]

⊤;µ
(Y,C)
n ,Σ(Y,C)

n )
, (2.47)

N (Y,C)
m =

T∑
t=1

γ
(Y,C)
m,t . (2.48)

Then, in the M-step, the updated parameters in the set λ̂(Y,C) would be given

by

α̂(Y,C)
m =

N
(Y,C)
m

T
(2.49)

µ̂(Y,C)
m =

1

N
(Y,C)
m

T∑
t=1

γ
(Y,C)
m,t [Y ⊤

t ,C
⊤
t ]

⊤ (2.50)

Σ̂(Y,C)
m =

1

N
(Y,C)
m

T∑
t=1

γ
(Y,C)
m,t ([Y ⊤

t ,C
⊤
t ]

⊤ − µ̂(Y,C)
m )([Y ⊤

t ,C
⊤
t ]

⊤ − µ̂(Y,C)
m )⊤. (2.51)

2.3.2 Conversion process

Schematic flow of the conversion process for production mapping is shown in Fig.

2.4. Given a time sequence of the articulatory feature vectors Y and the trained

GMM parameters λ(Y,C), a time sequence of the corresponding acoustic feature

vectors ĉ is determined by

ĉ = argmax
c

P (C|Y ,λ(Y,C)), (2.52)

where

P (C|Y ,λ(Y,C)) =
∑
all m

P (m|Y ,λ(Y,C))P (C|Y ,m,λ(Y,C))

=
T∏
t=1

M∑
m=1

P (m|Y t,λ
(Y,C))P (Ct|Y t,m,λ

(Y,C)), (2.53)
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Figure 2.4. Schematic flow of the conversion process for GMM-based production

mapping.

and m = {m1,m2, . . . ,mt, . . . ,mT} is again a mixture component sequence.

The m-th posterior probability density P (m|Y t,λ
(Y,C)) and the m-th condi-

tional probability density P (Ct|Y t,m,λ
(Y,C)) at each frame t are given by:

P (m|Y t,λ
(Y,C)) =

αmN (Y t;µ
(Y )
m ,Σ(Y Y )

m )∑M
n=1 αnN (Y t;µ

(Y )
n ,Σ(Y Y )

n )
, (2.54)

P (Ct|Y t,m,λ
(Y,C)) = N (Ct;E

(C)
m,t,D

(C)
m ), (2.55)

where the conditional mean vector E
(C)
m,t and the conditional covariance matrix

D(C)
m are written as

E
(C)
m,t = µ

(C)
m +Σ(CY )Σ(Y Y )−1

m (Y t − µ(Y )
m ), (2.56)

D(C)
m = Σ(CC)

m −Σ(CY )
m Σ(Y Y )−1

m Σ(Y C)
m . (2.57)

As in the section 2.2.2, following the parameter generation algorithm of the

HMM [40, 41], a time sequence vector of the acoustic parameters ĉ is determined

under an explicit relationship between the time sequence of static feature vectors
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c and that of the joint static and dynamic feature vectors C, which is given by

C =W cc, (2.58)

whereW c is a 2DcT -by-DcT linear transformation matrix to append the dynamic

feature vectors from the Eq. (2.42), which is written as

W c =
[
W c1 ,W c2 , . . . ,W ct , . . . ,W cT

]⊤ ⊗ IDc×Dc , (2.59)

W ct =
[
w(0)

ct ,w
(1)
ct

]
, (2.60)

w(n)
ct =

[
1st

0 , . . . , 0,

(t−L
(n)
− )−th

w(n)
c (−L(n)

− ), . . . ,
(t)−th

w(n)
c (0),

. . . ,

(t+L
(n)
+ )−th

w(n)
c (L

(n)
+ ), 0, . . . ,

T−th

0

]⊤
, n = 0, 1, (2.61)

L
(0)
− = L

(0)
+ = 0 and w

(0)
c (0) = 1.

Then, in order to maximize the likelihood function P (C|Y ,λ(Y,C)) in Eq.

(2.52), the EM algorithm can be deployed. Specifically, by using the constraint

in Eq. (2.58), an auxiliary function of a current parameter Y and an updated

parameter Ŷ is maximized as follows:

Q(C, Ĉ) =
∑
all m

P (m|Y ,C,λ(Y,C)) logP (Ĉ|Y ,m,λ(Y,C))

= −1

2
ĉ⊤W⊤

c D
(C)−1

W cĉ+ ĉ
⊤W⊤

c D
(C)−1

E(C) +K ′, (2.62)

where

D(C)−1
= diag

[
D

(C)−1

1 ,D
(C)−1

2 , . . . ,D
(C)−1

t , . . . ,D
(C)−1

T

]
, (2.63)

D(C)−1
E(C) =

[
D

(C)−1

1 E
(C)⊤

1 ,D
(C)−1

1 E
(C)⊤

2 , . . . ,

D
(C)−1

t E
(C)⊤

t , . . . ,D
(C)−1

T E
(C)⊤

T

]⊤
, (2.64)

D
(C)−1

t =
M∑

m=1

γ
(Y,C)
m,t D

(C)−1

m , (2.65)

D
(C)−1

t ,E
(C)
t =

M∑
m=1

γ
(Y,C)
m,t D

(C)−1

m E
(C)
m,t, (2.66)

γ
(Y,C)
m,t = P (m|Y t,Ct,λ

(Y,C)), (2.67)
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and the constant K ′ is again independent of Ĉ. Thus, the time sequence vector

of the estimated acoustic parameters ĉ would be given by

ĉ = (W⊤
c D

(C)−1
W c)

−1W⊤
c D

(C)−1
E(C). (2.68)

In this thesis, the likelihood function in Eq. (2.52) is again approximated with

a single mixture component sequence as follows:

P (C|Y ,λ(Y,C)) ≃ P (m|Y ,λ(Y,C))P (C|Y ,m,λ(Y,C)). (2.69)

First, the sub-optimum mixture component sequence m̂(Y ) = {m̂(Y )
1 , m̂

(Y )
2 , . . . ,

m̂
(Y )
t , . . . , m̂

(Y )
T } is determined by

m̂(Y ) = argmax
m(Y )

P (m(Y )|Y ,λ(Y,C)). (2.70)

The maximization of the auxiliary function is then approximated as follows:

Q(C, Ĉ) ≃ logP (m̂(Y )|Y ,λ(O,X))P (Ĉ|Y , m̂(Y ),λ(Y,C))

= −1

2
ĉ⊤W⊤

c D
(C)−1

m̂(Y ) W cĉ+ ĉ
⊤W⊤

c D
(C)−1

m̂(Y ) E
(C)

m̂(Y ) +K ′, (2.71)

where

E
(C)

m̂(Y ) =
[
E

(C)⊤

m̂
(Y )
1 ,1

,E
(C)⊤

m̂
(Y )
2 ,1

, . . . ,E
(C)⊤

m̂
(Y )
t ,t

, . . . ,E
(C)⊤

m̂
(Y )
T ,T

]⊤
, (2.72)

D
(C)−1

m̂(Y ) = diag
[
D

(C)−1

m̂
(Y )
1

,D
(C)−1

m̂
(Y )
2

, . . . ,D
(C)−1

m̂
(Y )
t

, . . . ,D
(C)−1

m̂
(Y )
T

]
. (2.73)

So that, the time sequence vector of the estimated acoustic parameters ĉ would

be finally given by

ĉ = (W⊤
c D

(C)−1

m̂(Y ) W c)
−1W⊤

c D
(C)−1

m̂(Y ) E
(C)

m̂(Y ) . (2.74)

2.4. Oversmoothing Problem of the Converted

Trajectory

One of the main problem of the conversion process in the GMM-based mapping

technique is the oversmoothed characteristic of the converted trajectory. This
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is because the trajectory-based conversion elaborated in both sections 2.2.2 and

2.3.2 forces the generated parameters to be as close as possible to the mean vector

sequence of the conditional probability density function. Moreover, in training

each of the mixture components, multiple contexts encompassing various char-

acteristics of features are considered. In this case, the variance features are con-

sidered to be noise in modeling the joint probability density function. Therefore,

reduction of the global variance (GV) [30] is often observed and oversmoothes

the converted trajectory.

In order to address this oversmoothing problem, a parameter generation pro-

cess considering GV has been studied in [30]. Its effectiveness has been confirmed

by the capability of the method in significantly improving both speech quality and

conversion accuracy in a voice conversion task. Moreover, in [42], the GV crite-

rion has been included in the training process to address the oversmoothing issue

while preserving the consistency between training and conversion process. In [43],

another constraint in a parameter generation procedure has been proposed to al-

leviate the oversmoothing effect by considering the modulation spectrum (MS),

i.e. in this case MS is the log-scaled power spectrum of the parameter sequence.

In [44], the MS constraint has been also taken into account within the training

procedure. Both of these works have shown very promising results in addresing

the oversmoothing issue.

In this thesis, we are observing the oversmoothing problem from another point

of view by considering the generation process of the speech waveform. In the con-

ventional method, i.e. using vocoder-based speech generation process, a speech

waveform is synthesized from the spectral envelope parameters and the excita-

tion parameters. However, this vocoder-based procedure is very sensitive to the

errors from the extracted speech parameters, such as F0 extraction errors and

spectral parameterization errors. Thus, the oversmoothing effects often observed

in the synthesized speech waveform, which significantly degrade the synthesized

speech quality, where one may call it as the ”vocoded speech” quality. In order to

address this issue, one possible solution is to avoid the use of the vocoder-based

process in synthesizing the speech waveform. In [32], it has been studied that by

directly filtering an input speech waveform according to the spectrum differences

between modified and input speech, which avoid the use of vocoder-based excita-

23



tion generation process, a significant improvement of the synthetic speech quality

can be achieved. This method will be elaborated further in the section 3.4.

2.5. Summary

In this chapter, two GMM-based statistical feature mapping methods between

acoustic and articulatory parameters have been elaborated, i.e. the GMM-based

acoustic-to-articulatory inversion mapping and the GMM-based articulatory-to-

acoustic production mapping. The advantages of using the GMM-based sta-

tistical feature mapping are its independency of input textual features and its

flexibility in terms of parameters modification. This flexibility is shown by the

clear and convenient process of model training and parameters conversion, which

mainly utilize the sophisticated EM algorithm. In this thesis, these traits will

prove to be significant benefits allowing the development of a high-quality speech

modification system through the manipulation of articulatory movements.
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Chapter 3

Proposed Articulatory

Controllable Speech Modification

Method using GMM-based

Statistical Feature Mappings

3.1. Introduction

In this chapter, based on the statistical feature mappings between acoustic and

articulatory parameters explained in the chapter 2, we propose the articula-

tory controllable speech modification method based on Gaussian mixture models

(GMMs). In the proposed method, both the GMM-based acoustic-to-articulatory

inversion mapping and the GMM-based articulatory-to-acoustic production map-

ping are integrated in a sequential mapping process. The proposed method allows

us to perform a speech modification process through a manipulation procedure

for controlling the unobserved articulatory movements corresponding to the input

speech signal. Moreover, high-quality modified speech sounds can be generated

from the manipulated articulatory movements by utilizing the spectrum differ-

ences between the original spectrum and the modified spectrum to avoid the use

of vocoder-based speech generation process [32].

This chapter is organized as follows. In section 3.2, the proposed sequential
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Figure 3.1. Schematic flow of the proposed sequential mapping for articulatory

controllable speech modification system.

mapping system between acoustic and articulatory parameters is described. In

section 3.3, the proposed methods for manipulating the articulatory movements

are described. In section 3.4, the proposed direct waveform modification methods

for generating modified speech sounds using spectrum differential are described.

Finally, we summarize this chapter in section 3.5.

3.2. Sequential Mapping System between Acous-

tic and Articulatory Parameters

In the proposed system, the GMM-based acoustic-to-articulatory inversion map-

ping, desribed in section 2.2, and the GMM-based articulatory-to-acoustic pro-

duction mapping, described in section 2.3, are sequentially integrated. First,

given an input speech signal, the mel-cepstrum parameters and source excitation

parameters are extracted. Then, using the trained GMM parameters of inversion

mapping λ(O,X), given the time sequence vector mel-cepstral segment features

26



O, a time sequence vector of articulatory parameters x̂ is estimated. In order

to perform a speech modification, the estimated articulatory parameters can be

manually manipulated, which would be denoted as x̂′. The methods for manip-

ulating these parameters are explained within the section 3.3. So that, given

the time sequence vector of manipulated articulatory parameters and source ex-

citation parameters Y ′, by using the trained GMM parameters of production

mapping λ(Y,C), a time sequence vector of the modified mel-cepstrum parameters

ĉ′ is estimated. Finally, the modified speech signal can be generated by using a

direct waveform modification method utilizing the spectrum differences between

the original spectrum and the modified one. The proposed direct waveform mod-

ification methods are further explained in the section 3.4. Figure 3.1 illustrate

the proposed sequential mapping system.

In the proposed system, there are two main characteristics that serve as the

fundamental reasons for the development, i.e. its intuitive approach in performing

speech modification procedure and its flexibility for convenient parameter modi-

fication for various purposes. The proposed system allows us to manipulate the

unobserved articulatory movements from a given input speech signal to perform

the speech modification. This process indeed benefits from the trait of the artic-

ulatory movements, which are more understandable compared to the spectrum of

the vocal tract. Then, the methods for manipulating the articulatory movements

and the direct waveform modification methods using spectrum differential [32]

can also be easily applied, thanks to the use of the GMM-based statistical fea-

ture mappings, which have sophisticated and convenient procedures. Moreover,

thanks to its independency of any input textual features, this system can then be

easily adapted into any languages, which raises the chances to be implemented in

various speech applications, such as language-learning or speech-therapy system.

3.3. Manipulation Methods for Controlling the

Articulatory Movements

In order to perform manipulation of the articulatory movements, it is more con-

venient to manually control the movements of a limited number of articulators,

e.g. only the movement of the tongue tip, rather than to manually control all
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articulators simultaneously. In this section, in order to perform such modifica-

tion, two methods of manipulation for controlling the articulatory movements

are described, i.e. simple manipulation method and manipulation method by

considering inter-correlations of articulatory parameters.

3.3.1 Simple manipulation method

From the inversion mapping described in the section 2.2, at frame t, a Dx-

dimensional feature vector of the estimated articulatory parameters x̂t is written

as

x̂t = [x̂t(1), x̂t(2), . . . , x̂t(d), . . . , x̂t(Dx)]
⊤. (3.1)

By performing scaling and/or translation, the feature vector of the manipulated

articulatory parameters x̂′
t will be given with the following simple linear trans-

formation

x̂′
t = Λtx̂t +ψt, (3.2)

where

Λt = diag[Λt(1),Λt(2), . . . ,Λt(d), . . . ,Λt(Dx)], (3.3)

ψt = [ψt(1), ψt(2), . . . , ψt(d), . . . , ψt(Dx)]
⊤. (3.4)

Here, the scaling factor and the translation factor to manipulate the d-th dimen-

sion articulatory parameter at frame t are denoted as Λt(d) and ψt(d), respec-

tively. By default, their values respectively are 1 and 0. So then, given a time

sequence vector of the estimated articulatory parameters x̂, which is written as

x̂ = [x̂⊤
1 , x̂

⊤
2 , . . . , x̂

⊤
t , . . . , x̂

⊤
T ]

⊤, (3.5)

a time sequence vector of the manipulated articulatory parameters x̂′ would then

be simply given by

x̂′ = Λx̂+ψ, (3.6)

where

Λ = [Λ1,Λ2, . . . ,Λt, . . . ,ΛT ]
⊤, (3.7)

ψ = [ψ⊤
1 ,ψ

⊤
2 , . . . ,ψ

⊤
t , . . . ,ψ

⊤
T ]

⊤. (3.8)
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By using this method, it would then allow one to perform a convenient ma-

nipulation process of particular articulatory movements. Moreover, it provides

also two important factors, i.e. for scaling and for translation, making it possible

to do any kind of alterations of the articulatory movements. That said, let us

then consider that if from total Dx dimensions of articulatory parameters, only

2 of them are manipulated at frame t, say the 1-st and the 2-nd ones. Thus, the

feature vector of the manipulated articulatory parameters x̂t would be written as

x̂′
t = [x̂′t(1), x̂

′
t(2), . . . , x̂t(d), . . . , x̂t(Dx)]

⊤ (3.9)

at frame t. This procedure would easily permit the manipulation of those first

2 dimensions of articulatory parameters. However, because movements of some

articulators are strongly correlated to each other [45], e.g. the movements of the

tip area of the tongue affects also the middle and back areas of the tongue, this

method would possibly cause unnatural movements of the articulators.

3.3.2 Manipulation method considering inter-correlations

of articulatory parameters

In order to prevent possible unnatural movements of the articulators, in this sec-

tion, a manipulation method by considering inter-correlations of articulatory pa-

rameters is described. The basic idea in this second method of manipulation is by

utilization of both the GMM parameters for inversion mapping and the trajectory-

based conversion framework [28] that respectively capture the inter-dimensional

correlation and the inter-frame correlation of the articulatory parameters. To be

able to do so, the conversion process of inversion mapping, described in section

2.2.2, needs to be performed in a two stage inversion procedure. In the first

stage, after the first inversion mapping, the estimated articulatory parameters

are manipulated by using the simple manipulation method described in the sec-

tion 3.3.1. Then, the modified components of the articulatory parameters are

appended to the source features, i.e. the mel-cepstral segment features. After

that, in the second stage, the second inversion mapping is performed to refine

the un-modified components of the articulatory parameters using the conditional

probability density function derived from the GMM of the inversion mapping.
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Finally, the modified components and the refined-un-modified components of ar-

ticulatory parameters are re-unified.

First, let us define a feature vector of the modified components of articulatory

parameters x̂
(ω)
t , which is written as

x̂
(ω)
t = [x̂′t(1), x̂

′
t(2), . . . , x̂

′
t(d), . . . , x̂

′
t(Dx(ω))]⊤, (3.10)

and that of the un-modified components of articulatory parameters x̂
(u)
t , which

is written as

x̂
(u)
t = [x̂t(1), x̂t(2), . . . , x̂t(d), . . . , x̂t(Dx(u))]⊤, (3.11)

at frame t, where

Dx(ω) +Dx(u) = Dx. (3.12)

So that, the 2Dx(ω)-dimensional and the 2Dx(u)-dimensional feature vectors of the

joint static and dynamic modified components and un-modified components of

articulatory parameters are respectively denoted as X̂
(ω)
t = [x̂

(ω)⊤

t ,∆x̂
(ω)⊤

t ]⊤ and

X̂
(u)
t = [x̂

(u)⊤

t ,∆x̂
(u)⊤

t ]⊤ at frame t. Here, similarly as in the section 2.2, the

dynamic feature vectors ∆x̂
(ω)
t and ∆x̂

(u)
t are respectively given by

∆x̂
(ω)
t =

L
(1)
+∑

τ=−L
(1)
−

w(1)(τ)x̂
(ω)
t+τ , (3.13)

∆x̂
(u)
t =

L
(1)
+∑

τ=−L
(1)
−

w(1)(τ)x̂
(u)
t+τ , (3.14)

where w(1)(τ), L
(1)
− , and L

(1)
+ are the 1-st order weight coefficients and the frame

lengths for computing the dynamic feature vectors. Then, the time sequence

vector of the modified components of articulatory parameters X̂(ω) and that

of the un-modified components of articulatory parameters X̂(u) are respectively

written as

X̂(ω) =
[
X̂

(ω)⊤

1 , X̂
(ω)⊤

2 , . . . , X̂
(ω)⊤

t , . . . , X̂
(ω)⊤

T

]⊤
, (3.15)

X̂(u) =
[
X̂

(u)⊤

1 , X̂
(u)⊤

2 , . . . , X̂
(u)⊤

t , . . . , X̂
(u)⊤

T

]⊤
. (3.16)
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Next, by performing the second stage inversion mapping, with a similar man-

ner as in the section 2.2.2, the refined time sequence vector of the un-modified

components of articulatory parameters ˆ̂x(u) can be determined by

ˆ̂x(u) = argmax
x̂(u)

P (X̂(u)|V ,λ(O,X)), (3.17)

where

V =
[
V ⊤

1 ,V
⊤
2 , . . . ,V

⊤
t , . . . ,V

⊤
T

]⊤
=

[[
O1, X̂

(ω)
1

]⊤
,
[
O2, X̂

(ω)
2

]⊤
, . . . ,

[
Ot, X̂

(ω)
t

]⊤
, . . . ,

[
OT , X̂

(ω)
T

]⊤]⊤
. (3.18)

The above likelihood function is then written as follows:

P (X̂(u)|V ,λ(O,X)) =
∑
all m

P (m|O,λ(O,X))P (X̂(u)|V ,m,λ(O,X))

=
T∏
t=1

M∑
m=1

P (m|Ot,λ
(O,X))P (X̂

(u)
t |V t,m,λ

(O,X)), (3.19)

where

P (X̂
(u)
t |V t,m,λ

(O,X)) = N (X̂
(u)
t ;E

(X(u))
m,t ,D(X(u))

m ), (3.20)

and

E
(X(u))
m,t = µ(X(u))

m +Σ(X(u)V )Σ(V V )−1

m (V t − µ(V )
m ), (3.21)

D(X(u))
m = Σ(X(u)X(u))

m −Σ(X(u)V )
m Σ(V V )−1

m Σ(V X(u))
m . (3.22)

Here, the relationship constraint between static and dynamic features of the un-

modified components of articulatory parameters is given by

X̂(u) =W x(u)x̂(u), (3.23)

where W x(u) is a 2Dx(u)T -by-Dx(u)T linear transformation matrix to append the

dynamic feature vectors from the Eq. (3.14). And thus, given the initial param-

eter X̂(u), the updated parameter ˆ̂X(u) can be estimated with the EM algorithm

by maximizing the following auxiliary function

Q(X̂(u), ˆ̂X(u)) =
∑
all m

P (m|O, X̂ ′,λ(O,X)) logP ( ˆ̂X(u)|V ,m,λ(O,X)), (3.24)
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Figure 3.2. Schematic flow of the proposed methods for controlling the articula-

tory movements.

where X̂ ′ is composed by both the modified components of articulatory param-

eters X̂(ω) and the un-modified ones X̂(u).

In this thesis, the likelihood function in Eq. (3.17) is again approximated with

a single mixture component sequence as follows:

P (X̂(u)|V ,λ(O,X)) ≃ P (m|O,λ(O,X))P (X̂(u)|V ,m,λ(O,X)). (3.25)

First, the sub-optimum mixture component sequence m̂(O) = {m̂(O)
1 , m̂

(O)
2 , . . . ,

m̂
(O)
t , . . . , m̂

(O)
T } is determined by the Eq. (2.34). The maximization of the

auxiliary function is then approximated as follows:

Q(X̂(u), ˆ̂X(u)) ≃ logP (m̂(O)|O,λ(O,X))P ( ˆ̂X(u)|V , m̂(O),λ(O,X))

= −1

2
ˆ̂x(u)⊤W⊤

x(u)D
(X(u))−1

m̂(O) W x(u) ˆ̂x(u) + ˆ̂x(u)⊤W⊤
x(u)D

(X(u))−1

m̂(O) E
(X)(u)

m̂(O) +K ′.

(3.26)
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Then, the refined time sequence vector of the un-modified components of articu-

latory parameters ˆ̂x(u) =
[
ˆ̂x
(u)⊤

1 , ˆ̂x
(u)⊤

2 , . . . , ˆ̂x
(u)⊤

t , . . . , ˆ̂x
(u)⊤

T

]⊤
is given by

ˆ̂x(u) = (W⊤
x(u)D

(X(u))−1

m̂(O) W x(u))−1W⊤
x(u)D

(X(u))−1

m̂(O) E
(X(u))

m̂(O) . (3.27)

So that, the time sequence vector of the manipulated articulatory parameters x̂′

would be written as

x̂′ = [x̂′
1, x̂

′
2, . . . , x̂

′
t, . . . , x̂

′
T ]

⊤, (3.28)

where

x̂′
t = [x̂′t(1), x̂

′
t(2), . . . , x̂

′
t(d), . . . , x̂

′
t(Dx)]

⊤, (3.29)

and

x̂′t(d) ∈ x̂
(ω)
t or x̂′t(d) ∈ ˆ̂x

(u)
t . (3.30)

Schematic flow of both simple manipulation method and the manipulation method

by considering inter-correlations between articulatory parameters are shown in

Fig. 3.2.

3.4. Modified Speech Generation Process with

Direct Waveform Modification Methods us-

ing Spectrum Differential

In order to be able to generate modified speech signal, the articulatory-to-acoustic

production mapping, described in the section 2.3.2 is performed. At frame t,

given the feature vector of manipulated articulatory parameters x̂′
t and that of

the source-excitation parameters, st, the 2(Dx +Ds)-dimensional feature vector

Y ′
t = [x̂′⊤

t , s
⊤
t ,∆x̂

′⊤
t ,∆s

⊤
t ]

⊤ is developed. So that, the time sequence vector

consisting of the manipulated articulatory parameters would be denoted as Y ′ =

[Y ′⊤
1 ,Y

′⊤
2 , . . . ,Y

′⊤
t , . . . ,Y

′⊤
T ]⊤. Then, similarly, as in the Eq. (2.52), the time

sequence of the modified acoustic parameters ĉ′ would be determined by

ĉ′ = argmax
c′

P (C ′|Y ′,λ(Y,C)), s.t. C ′ =W cc
′, (3.31)
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where

P (C ′|Y ′,λ(Y,C)) =
∑
all m

P (m|Y ′,λ(Y,C))P (C ′|Y ′,m,λ(Y,C))

=
T∏
t=1

M∑
m=1

P (m|Y ′
t,λ

(Y,C))P (C ′
t|Y ′

t,m,λ
(Y,C)), (3.32)

P (m|Y ′
t,λ

(Y,C)) =
αmN (Y ′

t;µ
(Y )
m ,Σ(Y Y )

m )∑M
n=1 αnN (Y ′

t;µ
(Y )
n ,Σ(Y Y )

n )
, (3.33)

P (C ′
t|Y ′

t,m,λ
(Y,C)) = N (C ′

t;E
(C′)
m,t ,D

(C)
m ), (3.34)

and

E
(C′)
m,t = µ(C)

m +Σ(CY )
m Σ(Y Y )−1

m (Y ′
t − µ(Y )

m ). (3.35)

So that, given the current parameter C ′, an updated parameter Ĉ ′ can be esti-

mated with EM algorithm by maximizing the following auxiliary function

Q(C ′, Ĉ ′) =
∑
all m

P (m|Y ′,C ′,λ(Y,C)) logP (Ĉ ′|Y ′,m,λ(Y,C)). (3.36)

Again, in this thesis, an approximation of the likelihood function in Eq. (3.31)

is deployed with a single mixture component sequence as follows:

P (C ′|Y ′,λ(Y,C)) ≃ P (m|Y ′,λ(Y,C))P (C ′|Y ′,m,λ(Y,C)). (3.37)

First, the sub-optimum mixture component sequence m̂(Y ′) = {m̂(Y ′)
1 , m̂

(Y ′)
2 , . . . ,

m̂
(Y ′)
t , . . . , m̂

(Y ′)
T } is determined by

m̂(Y ′) = argmax
m(Y ′)

P (m(Y ′)|Y ′,λ(Y,C)). (3.38)

Then the maximization of the approximated auxiliary function is defined by

Q(C ′, Ĉ ′) ≃ logP (m̂(Y ′)|Y ′,λ(O,X))P (Ĉ ′|Y ′, m̂(Y ′),λ(Y,C))

= −1

2
ĉ′⊤W⊤

c D
(C)−1

m̂(Y ′)W cĉ
′ + ĉ′⊤W⊤

c D
(C)−1

m̂(Y ′)E
(C′)

m̂(Y ′) +K ′, (3.39)

where

E
(C′)

m̂(Y ′) =
[
E

(C′)⊤

m̂
(Y ′)
1 ,1

,E
(C′)⊤

m̂
(Y ′)
2 ,2

, . . . ,E
(C′)⊤

m̂
(Y ′)
t ,t

, . . . ,E
(C′)⊤

m̂
(Y ′)
T ,T

]⊤
, (3.40)

D
(C)−1

m̂(Y ′) = diag
[
D

(C)−1

m̂
(Y ′)
1

,D
(C)−1

m̂
(Y ′)
2

, . . . ,D
(C)−1

m̂
(Y ′)
t

, . . . ,D
(C)−1

m̂
(Y ′)
T

]
. (3.41)
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Figure 3.3. Schematic flow of the vocoder-based speech generation process and

the direct waveform modification using spectrum differentials.

Finally, the time sequence vector of the modified acoustic parameters ĉ′ is given

by

ĉ′ = (W⊤
c D

(C)−1

m̂(Y ′)W c)
−1W⊤

c D
(C)−1

m̂(Y ′)E
(C′)

m̂(Y ′) . (3.42)

Given the modified acoustic features, i.e. modified mel-cepstrum, ĉ′, the mod-

ified speech signal can then be generated by utilizing the waveform generation

process based on a vocoder. In order to do that, the original excitation param-

eters, included in the feature sequence vector s, need to be used. This process

would then cause degradation of the quality of the generated speech signal. It is

mainly due to the use of the vocoder-based excitation generation process, which

is sensitive to the errors from the parameters extraction [32].

To alleviate the degradation of the quality, in this chapter, the direct wave-

form modification methods are described by avoiding the vocoder framework

in generating the excitation signal through direct filtering of the original wave-
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Figure 3.4. Process flow of the basic direct waveform modification method.

form with spectrum differential parameters. Figure 3.3 illustrates the difference

between the vocoder-based speech generation process and the direct waveform

modification-based using spectrum differential. Here, the spectrum differential

parameters represent the value differences between the original spectrum and

the modified one. Specifically, three direct waveform modification methods are

proposed, which are different to one another in the sense of the procedure for

producing the spectrum differential parameters.

3.4.1 Basic direct waveform modification method (diffBM)

In the basic direct waveform modification method (diffBM), the time sequence

vector of spectrum differential parameters ddiffBM is written as

ddiffBM = ĉ′ − c

=
[
[ĉ′1 − c1]⊤, [ĉ′2 − c2]⊤, . . . , [ĉ′t − ct]⊤, . . . , [ĉ′T − cT ]⊤

]⊤
, (3.43)
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where feature vector of the original spectrum parameters and that of the modified

ones are respectively denoted as ct and ĉ
′
t at frame t. Then, through a filtering

procedure, the original speech waveform is modified according to the spectrum

diferential parameters in ddiffBM. The modified speech waveform of the diffBM

method is then characterized with a time sequence vector of spectrum parameters

cdiffBM as follows:

cdiffBM = c+ ddiffBM

=
[
[c1 + (ĉ′1 − c1)]⊤, [c2 + (ĉ′2 − c2)]⊤, . . . ,

[ct + (ĉ′t − ct)]⊤, . . . , [cT + (ĉ′T − cT )]⊤
]⊤

= [ĉ′⊤1 , ĉ
′⊤
2 , . . . , ĉ

′⊤
t , . . . , ĉ

′⊤
T ]⊤. (3.44)

Therefore, the modified speech waveform of the diffBM method would still be

defined by the oversmoothed modified spectrum parameters ĉ′ as in the case with

using the conventional system (vocoder-based process). However, it is completely

different from that of the conventional system in terms of the excitation signal due

to the direct filtering procedure of the original speech waveform without using

the vocoder-based excitation generation. The process flow of the basic direct

waveform modification method is shown in Fig. 3.4

3.4.2 Refined direct waveform modification method (diffRM)

In the refined direct waveform modification method (diffRM), the time sequence

vector of spectrum differential parameters ddiffRM is written as

ddiffRM = ĉ′ − ĉ

=
[
[ĉ′1 − ĉ1]⊤, [ĉ′2 − ĉ2]⊤, . . . , [ĉ′t − ĉt]⊤, . . . , [ĉ′T − ĉT ]⊤

]⊤
, (3.45)

where feature vector of the oversmoothed original spectrum parameters is written

as ĉt at frame t. Then, again, through a filtering procedure, the original speech

waveform is modified according to the spectrum diferential parameters in ddiffRM.

The modified speech waveform of the diffRM method is then characterized with
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Figure 3.5. Process flow of the refined direct waveform modification method.

a time sequence vector of spectrum parameters cdiffRM as follows:

cdiffRM = c+ ddiffRM

=
[
[c1 + (ĉ′1 − ĉ1)]⊤, [c2 + (ĉ′2 − ĉ2)]⊤, . . . ,

[ct + (ĉ′t − ĉt)]⊤, . . . , [cT + (ĉ′T − ĉT )]⊤
]⊤

=
[
[ĉ′1 + ϵ1]

⊤, [ĉ′2 + ϵ2]
⊤, . . . , [ĉ′t + ϵt]

⊤, . . . , [ĉ′T + ϵT ]
⊤]⊤, (3.46)

where the refining factor is denoted as ϵt = ct − ĉt at frame t.

Therefore, the modified speech waveform of the diffRM method is defined

by not only the oversmoothed spectrum parameters ĉ′t, but also by the residual

given by ϵt at each frame t, that refine the overall structure of the spectrum. The

process flow of the refined direct waveform modification method is shown in Fig.

3.5
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3.4.3 Refined method using differential GMM (diffGMM)

In the previous section, the spectrum differential parameters in ddiffRM provides

refining factors to alleviate the oversmoothing effect of the modified spectrum

parameters. However, in order to generate these parameters, the acoustic-to-

articulatory production mapping needs to be performed twice, i.e. to estimate

the oversmoothed spectrum of the original speech ĉ and to estimated the modified

spectrum ĉ′. In this method, similar characteristics of the spectrum differential

parameters can be achieved by performing the mapping procedure only once

through the use of a differential GMM (diffGMM), which is analytically derived

from the subtraction of two normally-distributed independent random variables

to generate the spectrum differential parameters.

Then, let us define the time sequence vector of spectrum differential parame-

ters with differential GMM as g, which is determined by

ĝ =argmax
g

P (G|Y ′,Y ,λ(Y,C)),

s.t. G = C ′ −C and G = W cg, (3.47)

where

P (G|Y ′,Y ,λ(Y,C)) =
∑

all m(Y ′)

∑
all m(Y )

P (m(Y ′),m(Y )|Y ′,Y ,λ(Y,C))

P (G|Y ′,Y ,m(Y ′),m(Y ),λ(Y,C))

=
T∏
t=1

M∑
m(Y ′)=1

M∑
m(Y )=1

P (m(Y ′)|Y ′
t,λ

(Y,C))P (m(Y )|Y t,λ
(Y,C))

P (Gt|Y ′
t,Y t,m

(Y ′),m(Y ),λ(Y,C)), (3.48)

and

P (Gt|Y ′
t,Y t,m

(Y ′),m(Y ),λ(Y,C)) = N (Gt;E
(G)

m(Y ′),m(Y ),t
,D

(G)

m(Y ′),m(Y )), (3.49)

E
(G)

m(Y ′),m(Y ),t
= E

(C′)

m(Y ′),t
−E(C)

m(Y ),t
, (3.50)

D
(G)

m(Y ′),m(Y ′) =D
(C)

m(Y ′) +D
(C)

m(Y ) . (3.51)

So that, given the current parameter G, an updated parameter Ĝ can be esti-
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mated with EM algorithm by maximizing the following auxiliary function

Q(G, Ĝ) =
∑

all m(Y ′)

∑
all m(Y )

P (m(Y ′),m(Y )|Y ′,Y ,C ′,λ(Y,C))

logP (Ĝ|Y ′,Y ,m(Y ′),m(Y ),λ(Y,C)). (3.52)

In this thesis, an approximation of the likelihood function in Eq. (3.47) is

deployed with single mixture component sequences as follows:

P (G|Y ′,Y ,λ(Y,C))≃P (m(Y ′),m(Y )|Y ′,Y ,λ(Y,C))P (G|Y ′,Y ,m(Y ′),m(Y ),λ(Y,C)).

(3.53)

The sub-optimum mixture component sequences m̂(Y ′) = {m̂(Y ′)
1 , m̂

(Y ′)
2 , . . . ,

m̂
(Y ′)
t , . . . , m̂

(Y ′)
T } and m̂(Y ) = {m̂(Y )

1 , m̂
(Y )
2 , . . . , m̂

(Y )
t , . . . , m̂

(Y )
T } are determined

by the Eq. (3.38) and Eq. (2.70), respectively. Then, the maximization of the

approximated auxiliary function is defined by

Q(G, Ĝ) ≃ logP (m̂(Y ′), m̂(Y )|Y ′,Y ,λ(O,X))P (Ĝ|Y ′,Y , m̂(Y ′), m̂(Y ),λ(Y,C))

= −1

2
ĝ⊤W⊤

c D
(G)−1

m̂(Y ′),m̂(Y )W cĝ + ĝ
⊤W⊤

c D
(G)−1

m̂(Y ′),m̂(Y )E
(G)

m̂(Y ′),m̂(Y ) +K ′,

(3.54)

where

E
(G)

m̂(Y ′),m̂(Y ) =
[
E

(G)⊤

m̂
(Y ′)
1 ,m̂

(Y )
1 ,1

,E
(G)⊤

m̂
(Y ′)
2 ,m̂

(Y )
2 ,2

, . . . ,E
(G)⊤

m̂
(Y ′)
t ,m̂

(Y )
t ,t

, . . . ,E
(G)⊤

m̂
(Y ′)
T ,m̂

(Y )
T ,T

]⊤
,

(3.55)

D
(G)−1

m̂(Y ′),m̂(Y ) = diag
[
D

(G)−1

m̂
(Y ′)
1 ,m̂

(Y )
1

,D
(G)−1

m̂
(Y ′)
2 ,m̂

(Y )
2

, . . . ,D
(G)−1

m̂
(Y ′)
t ,m̂

(Y )
t

, . . . ,D
(G)−1

m̂
(Y ′)
T ,m̂

(Y )
T

]
.

(3.56)

Finally, the time sequence vector of the spectrum differential parameters with

this differential GMM method ĝ would be given by

ĝ = (W⊤
c D

(G)−1

m̂(Y ′),m̂(Y )W c)
−1W⊤

c D
(G)−1

m̂(Y ′),m̂(Y )E
(G)

m̂(Y ′),m̂(Y ) . (3.57)

The process flow of the refined direct waveform modification method with

differential GMM is shown in Fig. 3.6 The modified speech waveform of the dif-

ferential GMM method is characterized with a time sequence vector of spectrum

parameters cdiffGMM, which is written as

cdiffGMM = c+ ĝ. (3.58)
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Figure 3.6. Process flow of the refined direct waveform modification method.

The characteristics of the spectrum differential parameters in cdifGMM are the

same as in the cdiffRM. Moreover, because of its convenient procedure by the

utilization of the GMM parameters in the production mapping, it would be

straightforward to further apply some additional techniques, such as the GV mod-

elling [30, 46] or the modulation spectrum [47]. In brief, the differences between

the three proposed direct waveform modification methods and the conventional

vocoder-based method are shown in the Table 3.1.

3.5. Summary

In this chapter, the proposed articulatory controllable speech modification sys-

tem using Gaussian mixture model (GMM) has been elaborated. The proposed

system is capable of achieving a speech modification procedure by making it pos-

sible to manipulate the unobserved articulatory movements from the input speech
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Table 3.1. Comparison of several traits between the proposed direct waveform

modification methods and also the vocoder-based method
PPPPPPPPPPPtrait

method
vocoder diffBM diffRM diffGMM

input #1 spectrum speech speech speech

input #2 excitation spectrum diff. spectrum diff. spectrum diff.

spectrum diff. - ĉ′ − c ĉ′ − ĉ ĉ′ − ĉ
structure oversmoothed less-oversmoothed fine-structured fine-structured

quality very low high very high very high

# of prod. map. once twice twice once

signal. To do so, the GMM-based acoustic-to-articulatory inversion mapping and

the GMM-based articulatory-to-acoustic production mapping are integrated in a

sequential procedure, while allowing one to manually manipulate the articulatory

parameters. Moreover, a manipulation method for controlling articulatory param-

eters by considering their inter-correlations to produce more natural movements

is also described. Lastly, modified speech generation procedures that alleviate

the quality degradation of vocoder-based process through directly filtering the

speech waveform with spectrum differences have also been explained.
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Chapter 4

Experimental Evaluation

4.1. Speech and Articulatory Data

In this thesis, we used the Multichannel Articulatory (MOCHA) [48] database as

a set of simultaneously recorded speech and articulatory data. This database is

accessible from the Centre for Speech and Technology, University of Edinburgh.

The MOCHA database consists of one British male speaker and one British fe-

male speaker data. Each of the speaker uttered a set of 460 British TIMIT sen-

tences and the sampling rate of this speech data is 16 kHz. The whole recording

procedures were done in the Queen Margaret University, Edinburgh.

In the MOCHA database, the electromagnetic articulograph (EMA) device

was used to record the movements of the articulators during speaking. To do

that, seven coils were attached onto the articulators, i.e. lower incisor, upper lip,

lower lip, tongue tip, tongue body, tongue dorsum, and velum, to record their

movements. In addition, two other coils were attached onto the bridge of the nose

and the upper incisor as reference points. The movements of the seven articulators

were then recorded in on midsagittal plane at 500 Hz. Their positions over-time

were represented on the x- and y-coordinates. These data were normalized to

alleviate the noise effect from the measurements [49]. Figure 4.1 illustrates the

cartesian coordinate used to represent the movements of the articulators.
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4: TT = tongue tip
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Figure 4.1. Placement of coils for measuring EMA data and its cartesian coordi-

nate with upper incisor as the origin.

4.2. Experimental Conditions

In speech acoustic parameter extraction, we used the STRAIGHT (Speech Trans-

formation and Representation using Adaptive Interpolation of weiGHTed spec-

trum) analysis method [50] to calculate the spectral envelope at each frame. It

was then converted into the 1-st through 24−th mel-cepstral coefficients as the

spectral envelope parameters. The current ± 10 frames were used to extract

the mel-cepstral segments as described in section 2.2. For the source-excitation

parameters, we used log-scaled F0 values also including an unvoiced/voiced bi-

nary decision feature and log-scaled power values extracted from the STRAIGHT

spectrum. The fixed-point analysis [51] in STRAIGHT was employed to extract

F0 values. As for the articulatory parameters, we used the 14-dimensional EMA
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data described in the section 4.1. These 14-dimensional articulatory data were

converted into z-score (zero mean and unit variance). The frame shift was set to

5 ms.

In the experiments, we trained the Gaussian mixture models (GMMs) of the

acoustic-to-articulatory inversion mapping and the articulatory-to-acoustic pro-

duction mapping for each of the male and female speaker. The number of the

GMMs, therefore, are four. From the 460 utterances of each speaker, we used 350

of them for training the GMMs and the remaining 110 for the evaluations. In the

speech signal generation procedure, the mel log spectrum approximation (MLSA)

filter [52] was used as the synthesis filter for direct waveform modification meth-

ods and the global variance (GV) [53] was considered in only the conventional

vocoder-based process.

In order to evaluate the proposed articulatory controllable speech modifica-

tion method, we conducted four different experiments. In the first evaluation,

we investigated the accuracies of the GMM-based acoustic-to-articulatory inver-

sion mapping, the articulatory-to-acoustic production mapping, and the proposed

sequential mapping system using both of those mappings. In the second exper-

iment, we performed subjective evaluation to compare the performance of the

proposed methods for manipulating the articulatory movements, described in the

section 3.3. In the third evaluation, we performed another subjective evaluations

to compare the effectiveness of the proposed direct waveform modification meth-

ods with spectrum differential, described in the section 3.4, in generating modified

speech sounds. In the final experiment, we performed a categorical perception

evaluation to evaluate the controllability of the proposed system in modifying

particular phonemic sounds through articulatory control.

4.3. Investigation on Mapping Accuracy between

Acoustic and Articulatory Parameters

To objectively evaluate the performance of the proposed system, we investigated

the accuracies of the acoustic-to-articulatory inversion mapping, the articulatory-

to-acoustic production mapping, and the proposed sequential mapping system of

them. In the evaluation on inversion mapping, we measured the errors between
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Table 4.1. Average root-mean-square (RMS) error [mm] of estimated articula-

tory parameters for male and female speakers with varying number of mixture

components from 1 to 128.
XXXXXXXXXXXXXXspeaker

# mix. comp.
1 2 4 8 16 32 64 128

male 1.98 1.87 1.77 1.68 1.54 1.47 1.43 1.42

female 1.90 1.80 1.75 1.65 1.56 1.48 1.43 1.41

measured articulatory movements and the estimated ones. On the other hand, in

both the evaluation on production mapping and that of the proposed sequential

mapping, the errors between extracted spectrum parameters and the estimated

ones are measured. Both of the male and female speakers’ data were used on all

objective evaluations. The best number of mixture components were used for the

subjective evaluations in the succeeding section.

4.3.1 Objective evaluation on inversion mapping

In the first objective evaluation, we evaluated the accuracy of the inversion map-

ping system in estimating the articulatory parameters. The number of mixture

components in this evaluation was varied from 1 to 128. First, the accuracy of

the inversion mapping was measured by calculating the root-mean-square (RMS)

error between the measured articulatory movements and the estimated ones as

follows:

RMSE(d) =

√∑T
t=1(a

(o)
t (d)− a

(e)
t (d))2

T
, (4.1)

where RMSE(d) is the RMS error of d-th dimension of the articulatory parame-

ters. a
(o)
t (d) and a

(e)
t (d) respectively denote the measured and the estimated d-th

dimension articulatory parameter at frame t. Moreover, we calculated also the

correlation coefficient of articulatory parameters between the measured and the

estimated ones as follows:

r(d) =

∑T
t=1(a

(o)
t (d)− â(o)(d))(a

(e)
t (d)− â(e)(d))√∑T

t=1(a
(o)
t (d)− â(o)(d))2

√∑T
t=1(a

(e)
t (d)− â(e)(d))2

, (4.2)
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Table 4.2. Average correlation coefficient of estimated articulatory parameters

for male and female speakers with varying number of mixture components from

1 to 128.
XXXXXXXXXXXXXXspeaker

# mix. comp.
1 2 4 8 16 32 64 128

male 0.59 0.65 0.69 0.72 0.76 0.78 0.79 0.79

female 0.62 0.67 0.69 0.73 0.76 0.78 0.79 0.80

where r(d) is the correlation coefficient of d-th dimension of the articulatory pa-

rameters. a
(o)
t (d) and a

(e)
t (d) denote the d-th dimension articulatory parameter

at frame t for the measured and the estimated ones, respectively, while â(o)(d)

and â(e)(d) denote their mean values. These RMS errors and the correlation co-

efficients were averaged over all dimensions for each setting of number of mixture

components for each speaker.

The average RMS errors of all settings of number of mixture components for

the male and female speakers are shown in Table 4.1. The best performance is

achieved in both male and female speaker by using 128 mixture components. The

lowest RMS value is 1.42 mm for the male speaker and 1.41 mm for the female

speaker. Whereas the results of average correlation coefficients calculation for

both of the speakers are shown in Table 4.2. The highest correlation coefficient

for the male speaker is 0.79, achieved by using 64 and 128 mixture components,

while for the female speaker, the same highest number of correlation coefficient is

achieved using 128 mixture components. Overall, in this thesis, the performance

of the inversion mapping is comparable as in [28].

4.3.2 Objective evaluation on production mapping

In the second objective evaluation, the accuracy of the production mapping in

producing the spectrum parameters was investigated. The number of mixture

components was varied from 1 to 128. The accuracy of the production map-

ping was measured by using the mel-cepstral distortion between the target mel-
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Table 4.3. Average mel-cepstral distortion [dB] of mel-cepstrum parameters us-

ing conventional production mapping for male and female speakers with varying

number of mixture components from 1 to 128.
XXXXXXXXXXXXXXspeaker

# mix. comp.
1 2 4 8 16 32 64 128

male 6.13 5.60 5.27 5.05 4.88 4.76 4.70 4.71

female 6.50 6.09 5.69 5.49 5.24 5.05 4.94 4.95

cepstrum parameters and the estimated ones as follows:

Mel-CD[dB] =
10

ln 10

√√√√2
24∑
d=1

(c
(o)
d − c

(e)
d )2, (4.3)

where the dth mel-cepstrum coefficient of the target and the estimated one are

respectively denoted as c
(o)
d and c

(e)
d . The mel-cepstral distortion values were

then averaged over all evaluation data for each setting of speaker and number of

mixture components.

The average mel-cepstral distortions of all number of mixture components for

the male and female speakers are shown in Table 4.3. The highest accuracy is

achieved by using 64 mixture components for both of the speakers having mel-

cepstral distortion value as 4.70 dB and 4.94 dB for the male and female speaker,

respectively. The performance of the production mapping in this thesis is also

comparable to that of in [28].

4.3.3 Objective evaluation on sequential inversion and pro-

duction mapping

In the third objective evaluation, we investigated the performance of the pro-

posed sequential mapping system between acoustic and articulatory parameters,

described in the section 3.2. Similar as in evaluating the production mapping,

we calculated the mel-cepstral distortions between the extracted mel-cepstrum

parameters and the estimated ones. The number of mixture components was

varied from 1 to 128. We evaluated the performance of the system by training
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Table 4.4. Average mel-cepstral distortion [dB] of mel-cepstrum parameters using

proposed sequential mapping for male and female speakers with varying number

of mixture components from 1 to 128.
XXXXXXXXXXXXXXspeaker

# mix. comp.
1 2 4 8 16 32 64 128

male 5.73 5.31 5.03 4.85 4.69 4.55 4.43 4.38

female 6.13 5.79 5.49 5.29 5.04 4.86 4.69 4.65

the GMMs for the production mapping using both the measured articulatory pa-

rameters and the estimated articulatory parameters, which are generated using

the inversion mapping, from the training data.

The average mel-cepstral distortions over all evaluation data for each number

setting of mixture components are shown in Table 4.4. The best performance

is achieved by using 128 mixture components in both speakers. The distortion

values are lower compared to that of the conventional production mapping using

the measured articulatory parameters, having mel-cepstral distortion as 4.38 dB

for the male speaker and 4.65 dB for the female speaker. This result shows that by

performing the inversion and production mapping sequentially, reduction on the

mel-cepstral distortion can be achieved. Moreover, by training the GMM of the

production mapping with the converted articulatory data, the overall accuracy

can be further improved, where the lowest mel-cepstral distortion is 3.99 dB

for the male speaker and 4.20 dB for the female speaker using both 64 mixture

components, as shown in Table 4.5.

Table 4.5. Average mel-cepstral distortion [dB] of mel-cepstrum parameters using

proposed sequential mapping trained with converted EMA data.
XXXXXXXXXXXXXXspeaker

# mix. comp.
1 2 4 8 16 32 64 128

male 4.31 4.31 4.19 4.15 4.04 4.03 3.99 –

female 4.55 4.52 4.39 4.37 4.25 4.21 4.20 –
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Figure 4.2. Mean Opinion Score (MOS) test result of the quality of modified

synthetic speech from both manipulation methods

4.4. Comparison of Manipulation Methods for

Controlling Articulatory Movements

We performed a subjective evaluation to confirm the performance of the proposed

manipulation methods for controlling the articulatory movements, which are de-

scribed in the section 3.3. In this experiment, we evaluated the quality of the

synthetic speech modified by the proposed system. Specifically, the movement of

the tongue tip in y-coordinate was scaled from 1-fold, i.e. without modification,

to 5-fold. A mean opinion score (MOS) test was conducted, with the option of

the scores was a 5-point scale, i.e. 5: excellent, 4: good, 3: fair, 2: poor, 1:

bad. Ten listeners participated in the evaluation. Each listener evaluated 15 dis-

tinct utterances, randomly selected from the evaluation data, where each of the

utterance was modified with both of the simple manipulation method and the

manipulation method considering inter-correlations of articulatory parameters.

The subjective evaluation result on the male speaker is shown in Fig. 4.2.

The result shows that the proposed manipulation method by considering inter-

correlations of articulatory parameters capable of preserving higher quality of

modified speech sounds. Whereas the quality of the modified speech sounds

become significantly degraded if we did not consider those inter-correlations. This
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Figure 4.3. Trajectory of tongue-tip in y-coordinate with and without manipula-

tion (2.0-fold scaled).
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tongue tip.
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Figure 4.5. Mean Opinion Scores (MOS) on three different degree of articulations

for male speaker, hypo-articulation (left), normal articulation (centre), and hyper-

articulation (right)

result is consistent with the assumption that the movements of the articulators

are correlated to one another. The manipulated trajectory of the tongue tip

is shown in Fig. 4.3, where the overall structure is enlarged by a factor of 2.

The refined-unmodified trajectory of the tongue body, generated by using the

manipulation method by considering inter-correlations, is shown in Fig. 4.4. It

can be observed that the refined trajectory of the tongue body follows a shape

similar to that of the original one, but with several alterations according to the

changes in the trajectory of the tongue tip. The experimental results conclude

that the proposed manipulation method of articulatory movements is capable

of preserving the quality of modified speech sounds by considering the inter-

correlations of articulatory parameters in the manipulation process.

4.5. Comparison of Direct Waveform Modifica-

tion Methods for Generating Modified Speech

In order to asses the proposed direct waveform modification methods, which are

described in the section 3.4, we performed another subjective evaluation. In this

experiment, we evaluated the quality of the modified speech sounds generated

by using the proposed direct waveform modification methods. Specifically, we

emulated three speaking conditions by scaling the articulatory movements as:

normal-articulation (1-fold scale), hypo-articulated (0.5-fold scale), and hyper-
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Figure 4.6. Mean Opinion Scores (MOS) on three different degree of articula-

tions for female speaker, hypo-articulation (left), normal articulation (centre),

and hyper-articulation (right)

articulated (2-fold scale). Modified speech sounds were generated by using these

three settings of scaling manipulation and four different speech generation sys-

tems, i.e. using conventional vocoder-based method, basic direct waveform modi-

fication method (diffBM), refined direct waveform modification method (diffRM),

and refined method with differential GMM (diffGMM). A mean opinion score

(MOS) test was conducted using 5-point scale, as in the previous section. Twelve

listeners participated in the evaluation. Each listener evaluated 96 speech sam-

ples including 8 different utterances for each speech generation system and each

speaking condition setting.

The results of this subjective evaluation are shown in Fig. 4.5 and Fig. 4.6 for

the male and female speaker, respectively. In both of the speakers, the proposed

direct waveform modification methods are capable of improving the quality of the

modified speech sounds. Moreover, by considering the refining factors (residuals),

which alleviate the oversmoothing effect of the spectrum, described in the section

3.4.2, the diffBM method and the diffGMM method generate significantly higher-

quality of modified speech sounds. These traits are observed within all speaking

conditions for both the male and the female speakers. An example of comparison

of spectrogram from the diffGMM method and the conventional-vocoder based

method is shown in Fig. 4.7, where the sentence is ”Dolphins are intelligent

marine mammals.”. From that figure, it can be observed that oversmoothed

structures are possessed by the result from the vocoder. On the other hand, the

proposed direct waveform modification methods are capable of preserving fine-
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Figure 4.7. Comparison of spectrograms for sentence ”Dolphines are intelligent

marine mammals.” from the male speaker in a hypo-articulated speaking condi-

tion (0.5-fold scaling) using vocoder process (top), basic direct waveform modifi-

cation (second-top), refined direct waveform modification (second-bottom), and

refined method with differential GMM (bottom).

structures of the spectrogram, where diffRM and diffGMM methods can generate

finer structures compared to diffBM method. These results conclude that the

proposed direct waveform modification method significantly improves the quality

of the modified speech sounds by avoiding the use of vocoder-based excitation

generation process and alleviating the oversmoothed structure of the spectrum

with residual factors.
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Figure 4.8. Perception percentage of the phoneme modification results for the

male speaker

4.6. Evaluation on Controllability

In the last experiment, we evaluate the controllability of the proposed system

in modifying phonemic sounds by means of controlling the articulators. In this

evaluation, we perform modification of the sound of three front vowels in English,

i.e. /I/, /æ/, and /E/. To do so, we utilize the dominant role of the tongue in pro-

ducing these vowel sounds. Specifically, we manipulate the height configuration

of the tongue as: in vowel /I/, the height is the highest; in vowel /æ/, the height

is the lowest; and in vowel /E/, the height is between the former two. From the

evaluation data, we extracted twelve different words containing the vowel /E/.

Then, in order to change its sound into the sound of the vowel /I/, we modified

the height of the tongue by +0.5 cm and +1.0 cm. On the contrary, in order

to produce the sound of the vowel /æ/, we changed the height of the tongue by

−0.5 cm and −1.0 cm. The manipulation of the height of the tongue was per-

formed at the centre frame of the vowel /E/ in each word. The altered position

of the tongue was then interpolated to the centre frame of both the left phoneme

and the right phoneme of the vowel /E/, in the corresponding word, by using the

cubic spline interpolation method [54]. A categorical perception evaluation was

performed to assess the accuracy of the system in modifying these vowel sounds.
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Figure 4.9. Perception percentage of the phoneme modification results for the

female speaker

Twelve listeners participated in the evaluation. The modified vowel sound was

marked with a question mark in each of the label of the uttered word. Each

listener was requested to choose the marked vowel whether it was pronounced as

/I/, /E/, or /æ/. Note that, to train the models used in this experiment, frames

corresponding to the target vowels, /I/ and /æ/, were removed from the training

data. The third proposed direct waveform modification method, i.e. diffGMM,

was used.

The evaluation results are shown in Fig. 4.8 for the male speaker and in Fig.

4.9 for the female speaker. Clear transitions from the vowel /E/ to vowel /I/

can be observed, in both male and female speakers, as the height of the tongue

becomes higher. On the other hand, although such characteristic is not precisely

shown for the vowel /æ/, the tendency of the vowels to be heard as /æ/ can

be evidently observed as the height of the tongue becomes lower. Comparison

of the spectrograms of modified word ”stems” are shown in Fig. 4.10. In these

spectrograms, the differences of formant characteristics can be clearly observed,

where: the vowel /I/ has the lowest formant F1 and the highest formant F2; the

vowel /æ/ has the highest formant F1 and the lowest formant F2; and the vowel

/E/ posesses the middle values between those two former vowels. These results
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where the height of the tongue is lifted up 1.0cm (top) from the original position

(middle) and also shifted down 1.0cm (bottom), showing the formant character-

istics difference for vowel /I/ (top), /E/ (middle), and /æ/ (bottom).

indicate that the controllability of the proposed system in manipulating the ar-

ticulators is very sufficient as shown by its capability of allowing modification of

phonemic sounds through the manipulation of particular articulatory configura-

tions. Furthermore, it also suggests that the proposed system could well produce

intelligible sounds of foreign pronounciation because frames corresponding to the

target vowels were removed in the training process.

4.7. Summary

In this chapter, we conducted several experiments to evaluate the proposed artic-

ulatory controllable speech modification system. In section 4.3, we demonstrated

that the proposed sequential inversion-production mapping system yielded bet-

ter accuracy compared to the conventional system. In section 4.4, we found that
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the proposed method for controlling articulatory parameters by considering their

inter-correlations was capable of producing higher quality of modified speech.

Then, in section 4.5, we confirmed the effectiveness of the proposed direct wave-

form modification methods, which significantly improved the quality of the mod-

ified speech by avoiding the use of vocoder-based excitation generation process.

Finally, in section 4.6, we approved the controllability of the proposed system in

controlling the articulators, which was shown by its capability of changing the

sound of several chosen vowels.
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Chapter 5

Conclusion

5.1. Thesis Summary

Articulators, such as tongue or lips, have an essential role in the speech produc-

tion process, i.e. to determine the resonance characteristics of the vocal tract.

Therefore, speech can be parameterized not only by the spectrum of the vocal

tract, but also by the smoothly time-varying parameters, such as articulatory

parameters. Hence, exploiting the relationship between speech and articulators,

it would be a beneficial contribution to the development of speech technologies

if one could devise a system capable of utilizing the articulatory movements to

produce altered speech sounds. This sort of system would become a great benefit,

especially in the area of speech-assistive and language technologies. In this thesis,

in order to lay a groundwork for such kind of applications, we proposed an articu-

latory controllable speech modification system using statistical feature mappings,

specifically with Gaussian mixture model (GMM). The proposed system makes

it possible for one to modify an input speech signal by performing manipulation

of its unobserved articulatory movements.

In chapter 2, we reviewed the statistical feature mappings between acoustic

and articulatory parameters using the GMM. First, we described the GMM-based

acoustic-to-articulatory inversion mapping, along with its training and conversion

process. Then, we explained the GMM-based articulatory-to-acoustic production

mapping, along with also the training and conversion process. We showed that the

GMM-based statistical feature mapping possesses not only sophisticated but also
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convenient procedure. Thus, one would easily be able to accomplish in adjusting

the parameters of mapping procedure for more diverge tasks.

In chapter 3, we proposed an articulatory controllable speech modificiation

system by using the GMM-based statistical feature mappings. In the proposed

system, we integrated the GMM-based inversion and production mappings in a

sequential fashion. Thus, it allowed one to easily modify the acoustic spectrum

of the input speech by manipulating the corresponding articulatory parameters.

In order to perform the articulatory manipulation properly, we proposed also

a manipulation method of articulatory parameters by considering their inter-

correlations. Furthermore, to achieve generation of high-quality modified speech

sounds, we proposed speech generation procedure by avoiding the use of vocoder-

based excitation generation process through direct waveform modification meth-

ods using the spectrum differentials.

In chapter 4, we conducted several experimental evaluations to assess the

performance and effectiveness of the proposed system. The experimental results

demonstrated that: 1) the proposed sequential mapping system between acous-

tic and articulatory parameters generates higher accuracy in the estimation of

the acoustic spectrum compared to the conventional production procedure using

the measured articulatory parameters, 2) the proposed method for manipulation

of articulatory movements by considering their inter-correlations is capable of

bearing more natural quality of modified speech, 3) the proposed direct wave-

form modification methods using spectrum differential significantly improve the

quality of the modified speech because of bypassing the use of vocoder-based ex-

citation generation process, and 4) the controllability of the proposed system has

been confirmed by its capability of modifying the sound of several chosen vowels

through handling the configuration of particular articulators, such as the height

of the tongue.

5.2. Future Work

Despite the success of developing an articulatory controllable speech modification

system, some works need to be done for further development.

Independency of speaker’s characteristics and articulatory data: In
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order to develop a generally applicable system, it is important to consider an

independency of both speaker’s characteristics and availability limitation of ar-

ticulatory data. First, to address the speaker-independency issue, one way to

solve it is by employing the eigenvoice conversion technique which has been used

in the voice conversion framework [55, 56]. Through this technique, one can easily

adapt arbitrary source speaker into the trained model by using only a very few

amount of adaptation utterances. Then, in order to address the limitation of ar-

ticulatory data, one can deploy the speaker-normalization technique in [57], which

unifies the GMM-based acoustic-to-articulatory inversion mapping and voice con-

version, making it possible to train inversion mapping function without the need

of articulatory data of the source speaker. Therefore, by integrating these two

techniques, the GMM-based eigenvoice conversion and speaker-normalization, a

speaker-independent articulatory controllable speech modification system that

does not depend on also source articulatory data can be developed.

Implementation of real-time computation and real-life applications:

To attain the essential goal in developing a system utilizing relationship between

speech and articulators, of course, creation of real-life applications that can be

deployed in daily activities need to be executed. In order to achieve that, first,

a real-time computation process must be considered. One way to do that is

by adapting the low-delay voice conversion framework which utilizes the time-

recursive algorithm in achieving a high-quality real-time computation process

[58]. Furthermore, a consideration of lower-quality of input speech parameter

or diagonalization of covariance matrices can further reduces the computation

cost of the real-time conversion procedure [59]. Finally, to embed the proposed

system into a real-life application, one can reflect to the use of visualization-aid

of articulatory movements for speech therapy and language learning programs in

[15]. Incorporating the speaker-normalization procedure in [57], an articulatory

recovery system can be achieved by assuming that healthy (in case of speech ther-

apy) or native (in case of language) speaker would have the correct articulation

movements. Then, integrating it with the eigenvoice conversion technique [56],

one can develop a voice reconstruction system that utilize the voice and articula-

tory movements of healthy or native speaker as the reference one. Moreover, by

incorporation of source excitation modification, i.e. by controlling the vocal folds
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organ, and also duration control, one may develope a comprehensive and aug-

mentative system capable of providing desirable change in input voice with full

control of the speech organs that can be very effective for the use in education,

medical, research and daily life area.

Development of articulatory database: We also plan to develop our own

articulatory database. This database would be consisted of several non-native

English speakers, e.g. Japanese. The articulatory movements would be recorded

by the electromagnetic articulograph (EMA) device, where the speech sounds

would be recorded simultaneously. Several pre-processing steps are needed to be

performed, such as data normalization and noise removal. This database will be

used for further developments of speech-articulatory mapping technique and its

application in real life.
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[8] B. J. Kröger, V. Graf-Bortscheller, and A. Lowit, “Two- and three-

dimensional visual articulatory models for pronunciation training and for

treatment of speech disorders,” in Proc. INTERSPEECH, Brisbane, Queens-

land, Australia, 2008, pp. 2639—-2642.

64



[9] D. W. Massaro, “A computer-animated tutor for spoken and written lan-

guage learning,” in Proc. of the 5th International Conference on Multimodal

Interfaces, British Columbia, Canada, 2003, pp. 172—-175.

[10] ——, “The psychology and technology of talking heads: Applications in

language learning,” in Advances in Natural Multimodal Dialogue Systems.

Heidelberg: Springer, 2005, vol. 30, pp. 183—-214.

[11] D. W. Massaro, Y. Liu, T. H. Chen, and C. Perfetti, “A multilingual em-

bodied conversational agent for tutoring speech and language learning,” in

Proc. INTERSPEECH, Pittsburgh, USA, 2006, pp. 825—-828.
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